Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.477
Filtrar
1.
Nat Aging ; 4(4): 527-545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594460

RESUMO

Limited understanding exists regarding how aging impacts the cellular and molecular aspects of the human ovary. This study combines single-cell RNA sequencing and spatial transcriptomics to systematically characterize human ovarian aging. Spatiotemporal molecular signatures of the eight types of ovarian cells during aging are observed. An analysis of age-associated changes in gene expression reveals that DNA damage response may be a key biological pathway in oocyte aging. Three granulosa cells subtypes and five theca and stromal cells subtypes, as well as their spatiotemporal transcriptomics changes during aging, are identified. FOXP1 emerges as a regulator of ovarian aging, declining with age and inhibiting CDKN1A transcription. Silencing FOXP1 results in premature ovarian insufficiency in mice. These findings offer a comprehensive understanding of spatiotemporal variability in human ovarian aging, aiding the prioritization of potential diagnostic biomarkers and therapeutic strategies.


Assuntos
Oócitos , Ovário , Feminino , Humanos , Animais , Camundongos , Ovário/metabolismo , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Células da Granulosa/metabolismo , Perfilação da Expressão Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição Forkhead/genética
2.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655862

RESUMO

Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.


Assuntos
Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Fator de Transcrição Ikaros , Linfócitos T Reguladores , Animais , Fator de Transcrição Ikaros/metabolismo , Fator de Transcrição Ikaros/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Knockout
3.
Sci Rep ; 14(1): 9440, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658799

RESUMO

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Assuntos
Melaninas , Pteridinas , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , alfa-MSH , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Melaninas/biossíntese , Melaninas/metabolismo , Animais , alfa-MSH/metabolismo , alfa-MSH/farmacologia , Camundongos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Raios Ultravioleta , Morfolinas/farmacologia , Cromonas/farmacologia , Nitrilas/farmacologia , Butadienos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Melanoma Experimental/metabolismo , 60451
4.
Vet Res ; 55(1): 53, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658996

RESUMO

Gene expression for Th1/Th2 cytokines (IL-4 and IFN-É£), regulatory cytokines (TGF-ß and IL-10) and the transcriptional factor FoxP3 was analyzed in the liver and hepatic lymph nodes (HLN) from sheep immunized with partially protective and non-protective vaccine candidates and challenged with Fasciola hepatica. FoxP3 T cells were also evaluated by immunohistochemistry (IHQ). The most remarkable difference between the partially protected vaccinated (V1) group and the non-protected vaccinated (V2) group was a more severe expansion of FoxP3 T cells recorded by IHQ in both the liver and HLN of the V2 group as compared to the V1 group, whereas no differences were found between the V2 group and the infected control (IC) group. Similar results were recorded for FoxP3 gene expression although significant differences among V1 and V2 groups were only significant in the HLN, while FoxP3 gene expression was very similar in the V2 and IC groups both in the liver and HLN. No significant differences for the remaining cytokines were recorded between the V1 and V2 groups, but in the liver the V2 group shows significant increases of IFN-É£ and IL-10 as compared to the uninfected control (UC) group whereas the V1 group did not. The lower expansion of FoxP3 T cells and lower increase of IFN-É£ and IL-10 in the partially protected vaccinated group may be related with lower hepatic lesions and fluke burdens recorded in this group as compared to the other two infected groups. The most relevant change in regulatory cytokine gene expression was the significant increase of TGF-ß in the liver of IC, V1 and V2 groups as compared to the UC group, which could be related to hepatic lesions.


Assuntos
Citocinas , Fasciola hepatica , Fasciolíase , Fatores de Transcrição Forkhead , Doenças dos Ovinos , Animais , Fasciolíase/veterinária , Fasciolíase/prevenção & controle , Fasciolíase/imunologia , Fasciola hepatica/imunologia , Ovinos , Fatores de Transcrição Forkhead/metabolismo , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia , Citocinas/metabolismo , Fígado/parasitologia , Fígado/imunologia , Vacinas/imunologia , Vacinas/administração & dosagem , Células Th1/imunologia , Linfonodos/imunologia , Feminino , Células Th2/imunologia
5.
Front Immunol ; 15: 1389105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660296

RESUMO

Background: Progressive decline of allograft function leads to premature graft loss. Forkhead box P3 (FOXP3), a characteristic gene of T-regulatory cells, is known to be essential for auto-antigen tolerance. We assessed the hypothesis that low FOXP3 mRNA splice variant levels in peripheral blood cells early after transplantation are associated with progressive allograft injury. Methods: Blood samples were prospectively collected from 333 incident kidney transplant recipients on the first and 29th postoperative day. We used quantitative polymerase chain reaction to determine transcripts of 3 isotypes of FOXP3 splice variants, including pre-mature FOXP3 and full length FOXP3 (FOXP3fl). We investigated the association between FOXP3 splice variant levels and the declines in estimated glomerular filtration rate (eGFR) of more than 5ml/min/1.73m2 within the first-year post-transplant using logistic regression. Results: We observed lower FOXP3fl levels in recipients with declining eGFR (N = 132) than in recipients with stable eGFR (N = 201), (logarithmic value -4.13 [IQR -4.50 to -3.84] vs -4.00 [4.32 to -3.74], p=0.02). In ad hoc analysis pre-transplant FOXP3fl levels were similar in both groups. The association between FOXP3fl and declining eGFR was confirmed by multivariable analysis adjusted for potential confounding factors (Odds Ratio 0.51, 95% confidence interval 0.28 to 0.91: p=0.02). When stratifying FOXP3fl levels into quartiles, recipients with lower day1 FOXP3fl had the highest rate of declining eGFR (p=0.04). Conclusion: Low FOXP3fl splice variant levels at the first postoperative day in kidney transplant recipients were associated with severe decline of eGFR, a well-known surrogate for hard endpoints.


Assuntos
Fatores de Transcrição Forkhead , Transplante de Rim , Isoformas de Proteínas , Tolerância ao Transplante , Transplante de Rim/efeitos adversos , Humanos , Fatores de Transcrição Forkhead/genética , Masculino , Feminino , Pessoa de Meia-Idade , Tolerância ao Transplante/genética , Adulto , Isoformas de Proteínas/genética , Taxa de Filtração Glomerular , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/genética , Aloenxertos/imunologia , Processamento Alternativo , Idoso
6.
Turk J Ophthalmol ; 54(2): 69-75, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38645270

RESUMO

Objectives: Forkhead box P3 (FOXP3) gene polymorphisms have been evaluated in many autoimmune diseases, including Graves' disease (GD), in different populations. However, those polymorphisms have not been analyzed in GD or Graves' ophthalmopathy (GO) in the Turkish population. In this study, we aimed to evaluate the frequency of FOXP3 polymorphisms in GD with or without ophthalmopathy in a Turkish population. Materials and Methods: The study included 100 patients with GO, 74 patients with GD without ophthalmopathy, and 100 age- and sex-matched healthy controls. In all study participants, rs3761547 (-3499 A/G), rs3761548 (-3279 C/A), and rs3761549 (-2383 C/T) single nucleotide polymorphisms (SNPs) were detected using the polymerase chain reaction-restriction fragment length polymorphism method. The chi-square test was used to evaluate genotype and allele frequencies. Odds ratios and 95% confidence intervals were calculated for genotype and allele risks. Results: In the patient group (including GD with or without ophthalmopathy), the rs3761548 AC and AA genotype and rs3761549 CT genotype were significantly more frequent than in the control group (all p<0.05). No genotypic and allelic differences were observed for rs3761547 between the patient and control groups (all p>0.05). There was no statistically significant difference between the GO and GD without ophthalmopathy groups concerning the allele and genotype frequencies of all three FOXP3 SNPs (all p>0.05). Conclusion: The AC and AA genotypes of rs3761548 (-3279) and CT genotype of rs3761549 (-2383 C/T) were shown to be possible risk factors for GD development in the Turkish population. However, none of the three SNPs was shown to be associated with the development of GO in patients with GD.


Assuntos
Fatores de Transcrição Forkhead , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Doença de Graves , Oftalmopatia de Graves , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Turquia/epidemiologia , Feminino , Fatores de Transcrição Forkhead/genética , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/epidemiologia , Oftalmopatia de Graves/diagnóstico , Adulto , Pessoa de Meia-Idade , Doença de Graves/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
7.
J Cell Mol Med ; 28(8): e18294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652109

RESUMO

Forkhead box protein 1 (FOXP1) serves as a tumour promoter or suppressor depending on different cancers, but its effect in oesophageal squamous cell carcinoma has not been fully elucidated. This study investigated the role of FOXP1 in oesophageal squamous cell carcinoma through bioinformatics analysis and experimental verification. We determined through public databases that FOXP1 expresses low in oesophageal squamous cell carcinoma compared with normal tissues, while high expression of FOXP1 indicates a better prognosis. We identified potential target genes regulated by FOXP1, and explored the potential biological processes and signalling pathways involved in FOXP1 in oesophageal squamous cell carcinoma through GO and KEGG enrichment, gene co-expression analysis, and protein interaction network construction. We also analysed the correlation between FOXP1 and tumour immune infiltration levels. We further validated the inhibitory effect of FOXP1 on the proliferation of oesophageal squamous cell carcinoma cells through CCK-8, colony formation and subcutaneous tumour formation assays. This study revealed the anticarcinogenic effect of FOXP1 in oesophageal squamous cell carcinoma, which may serve as a novel biological target for the treatment of tumour.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras , Humanos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Biologia Computacional/métodos , Camundongos , Prognóstico , Mapas de Interação de Proteínas/genética , Transdução de Sinais , Redes Reguladoras de Genes , Camundongos Nus
8.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1353-1360, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621983

RESUMO

This study aims to investigate the effect of Xixin Decoction on the T helper 17 cell(Th17)/regulatory T cell(Treg) ba-lance of intestinal mucosa and the expression of related transcription factors in the senescence-accelerated mouse-prone 8(SAMP8) model. Fifty 14-week male mice of SAMP8 were randomized by the random number table method into model group, probiotics group, and high-, medium-, and low-dose Xixin Decoction groups, with 10 mice in each group. Ten 14-week male mice of senescence-acce-lerated mouse-resistant 1(SAMR1) served as control group. After 10 weeks of feeding, the mice were administrated with correspon-ding drugs for 10 weeks. Morris water maze test was carried out to examine the learning and memory abilities of mice. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of secretory immunoglobulin A(SIgA) in the intestinal mucosa, and flow cytometry to detect the percentage content of Th17 and Treg in the intestinal mucosa. Western blot was performed to determine the protein levels of retinoid-related orphan receptor gamma t(RORγt) and forkhead box p3(Foxp3) in the mouse colon tissue. Compared with control group, the escape latency of mice in model group was significantly prolonged(P<0.01), and the number of times of crossing the platform and the residence time in the target quadrant were significantly reduced within 60 s(P<0.01), intestinal mucosal SIgA content was significantly decreased(P<0.01), Th17 content was increased(P<0.05), Treg content was decreased(P<0.01), the expression of RORγt protein was increased and Foxp3 protein was decreased in colon(P<0.01). Compared with the model group, high-dose Xixin Decoction group improved the learning and memory ability(P<0.05 or P<0.01). Probiotics group and high-and medium-dose Xixin Decoction group increased the content of SIgA in intestinal mucosa(P<0.05 or P<0.01), decreased percentage content of Th17 and increased the percentage content of Treg in intestinal mucosa(P<0.05 or P<0.01). Furthermore, they down-regulated the protein level of RORγt and up-regulated the protein level of Foxp3 in the intestinal mucosa(P<0.01). In conclusion, Xixin Decoction may act on intestinal mucosal immune barrier, affect gut-brain information exchange, and improve the learning and memory ability of SAMP8 by promoting SIgA secretion and regulating the Th17/Treg balance and the expression of RORγt and Foxp3.


Assuntos
Linfócitos T Reguladores , Células Th17 , Camundongos , Masculino , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Imunoglobulina A Secretora/farmacologia
9.
Cell Death Dis ; 15(4): 239, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561331

RESUMO

The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.


Assuntos
Ferroptose , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/genética , Ferroptose/genética , MicroRNAs/genética , RNA Interferente Pequeno , Fatores de Transcrição Forkhead/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
10.
Nat Commun ; 15(1): 2632, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565598

RESUMO

Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.


Assuntos
Lateralidade Funcional , Estudo de Associação Genômica Ampla , Humanos , Exoma/genética , Encéfalo , Proteínas Repressoras/genética , Fatores de Transcrição Forkhead/genética
11.
J Transl Med ; 22(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566233

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Assuntos
Artrite , Doenças Autoimunes , Colite , Animais , Camundongos , Artrite/metabolismo , Artrite/patologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
12.
Nat Commun ; 15(1): 2859, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570500

RESUMO

Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.


Assuntos
Diabetes Mellitus Experimental , Fatores de Transcrição Forkhead , Camundongos , Humanos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Transporte Ativo do Núcleo Celular , Peixe-Zebra/metabolismo , Carioferinas/metabolismo
13.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612468

RESUMO

This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites' impacts on host cellular pathways. The results underscore a complex interplay between microbial metabolites, p66Shc activation, and mitochondrial dysfunction, highlighting the significance of the gut microbiome in influencing disease outcomes through oxidative stress pathways. Conclusively, the review posits that targeting the gut microbiota-p66Shc-mitochondrial axis could offer novel therapeutic strategies for mitigating the development and progression of metabolic diseases. This underscores the potential of dietary interventions and microbiota modulation in managing oxidative stress and inflammation, pivotal factors in chronic disease etiology.


Assuntos
Doenças Metabólicas , Humanos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteínas Adaptadoras de Transdução de Sinal , Fatores de Transcrição Forkhead , Mitocôndrias
14.
Front Immunol ; 15: 1331846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605970

RESUMO

Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.


Assuntos
Autoimunidade , Linfócitos T Reguladores , Diferenciação Celular , Timo/metabolismo , Fatores de Transcrição Forkhead/metabolismo
15.
Medicine (Baltimore) ; 103(15): e37709, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608123

RESUMO

Breast cancer is a common malignancy with the highest mortality rate among women worldwide. Its incidence is on the rise year after year, accounting for more than one-tenth of new cancers worldwide. Increasing evidence suggests that forkhead box (FOX) transcription factors play an important role in the occurrence and development of breast cancer. However, little is known about the relationship between the expression, prognostic value, function, and immune infiltration of FOX transcription factors in tumor microenvironment. We used bioinformatics to investigate expression and function of FOX factor in breast cancer. Our results revealed the expression levels of FOXA1 and FOXM1 were significantly higher in breast cancer tissues than in normal tissues. The high expression of mRNA in FOXA1 (P < .05), FOXM1 (P < .01), and FOXP1 (P < .05) groups was related to tumor stage. Survival analysis results showed that increased FOXP1 mRNA levels were significantly associated with overall survival (OS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) in all patients with breast cancer (P < .05). Patients with the FOXA1 high-expression group had better RFS and DMFS than the low-expression group (P < .05), while patients with FOXM1 high-expression group had worse RFS, OS, and DMFS than the low-expression group (P < .05). Meanwhile, mutation analysis showed that genetic alterations in FOX transcription factors were significantly associated with shorter OS and progression-free survival (P < .05), but not with disease-free survival (P = .710) in patients with breast cancer. FOXP1, FOXA1, and FOXM1 may be used as potential biomarkers to predict the prognosis of patients with breast cancer. Functional enrichment indicated that FOX was mainly involved in cell division, cell senescence, cell cycle, and prolactin signaling pathway. In patients with breast cancer, FOXC2 expression was negatively correlated with the infiltration of B cells and positively correlated with the infiltration of neutrophils and dendritic cells. However, FOXM1 was negatively correlated with the infiltration of CD8 + T cells and macrophages and positively correlated with the infiltration of neutrophils and dendritic cells. These findings provided novel insights into the screening of prognostic biomarkers of the FOX family in breast cancer and laid a foundation for further research on the immune infiltration of the FOX transcription factor family members in tumors.


Assuntos
Neoplasias da Mama , Fatores de Transcrição Forkhead , Feminino , Humanos , Biomarcadores , Neoplasias da Mama/genética , Fatores de Transcrição Forkhead/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Proteínas Repressoras , RNA Mensageiro
16.
Parasit Vectors ; 17(1): 189, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632598

RESUMO

BACKGROUND: Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS: Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS: In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS: T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.


Assuntos
MicroRNAs , Toxoplasma , Gravidez , Feminino , Animais , Camundongos , Toxoplasma/genética , Regiões 3' não Traduzidas , PPAR gama/genética , Placenta , Transdução de Sinais , MicroRNAs/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
17.
Sci Rep ; 14(1): 8321, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594471

RESUMO

Endometrial fibrosis is the histologic appearance of intrauterine adhesion (IUA). Emerging evidences demonstrated umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-exo) could alleviate endometrial fibrosis. But the specific mechanism is not clear. In this study, we explored the effect of UCMSC-exo on endometrial fibrosis, and investigated the possible role of miR-140-3p/FOXP1/Smad axis in anti-fibrotic properties of UCMSC-exo. UCMSC-exo were isolated and identified. Transforming growth factor-ß (TGF-ß) was used to induce human endometrial stromal cell (HESC) fibrosis. Dual luciferase assay was performed to verify the relationship between miR-140-3p and FOXP1. The expressions of fibrotic markers, SIP1, and p-Smad2/p-Smad3 in HESCs stimulated with UCMSC-exo were detected by western blot. In addition, the effects of miR-140-3p mimic, miR-140-3p inhibitor and FOXP1 over-expression on endometrial fibrosis were assessed. The isolated UCMSC-exo had a typical cup-shaped morphology and could be internalized into HESCs. The expressions of fibrotic markers were significantly increased by TGF-ß, which was reversed by UCMSC-exo. MiR-140-3p in UCMSC-exo ameliorated TGf-ß-induced HESCs fibrosis. FOXP1 was identified as the direct target of miR-140-3p, which could inversely regulate miR-140-3p's function on HESCs fibrosis. Furthermore, we demonstrated that miR-140-3p in UCMSC-exo regulated Smad signal pathway to exert the anti-fibrotic effect in HESCs. The anti-fibrotic effect of UCMSC-derived exosomes against HESC fibrosis was at least partially achieved by miR-140-3p/FOXP1/Smad axis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Doenças Uterinas , Humanos , Feminino , Exossomos/genética , Células Estromais , Fator de Crescimento Transformador beta , Cordão Umbilical , MicroRNAs/genética , Fibrose , Proteínas Repressoras , Fatores de Transcrição Forkhead/genética
18.
Exp Biol Med (Maywood) ; 249: 10040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577707

RESUMO

Regulatory T cells (Tregs) constitute a specialized subset of T cells with dual immunoregulatory and modulatory functions. Recent studies have reported that Tregs mediate immune responses and regulate the development and repair processes in non-lymphoid tissues, including bone and cardiac muscle. Additionally, Tregs facilitate the repair and regeneration of damaged lung tissues. However, limited studies have examined the role of Tregs in pulmonary development. This study aimed to evaluate the role of Tregs in pulmonary development by investigating the dynamic alterations in Tregs and their hallmark cellular factor Forkhead box P3 (Foxp3) at various stages of murine lung development and establishing a murine model of anti-CD25 antibody-induced Treg depletion. During the early stages of murine lung development, especially the canalicular and saccular stages, the levels of Treg abundance and expression of Foxp3 and transforming growth factor-ß (TGF-ß) were upregulated. This coincided with the proliferation period of alveolar epithelial cells and vascular endothelial cells, indicating an adaptation to the dynamic lung developmental processes. Furthermore, the depletion of Tregs disrupted lung tissue morphology and downregulated lung development-related factors, such as surfactant protein C (SFTPC), vascular endothelial growth factor A (VEGFA) and platelet endothelial cell adhesion molecule-1 (PECAM1/CD31). These findings suggest that Tregs promote murine lung development.


Assuntos
Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Fatores de Transcrição Forkhead/metabolismo
19.
Am J Reprod Immunol ; 91(3): e13827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433312

RESUMO

BACKGROUND: The polymorphisms of the FOXP3 gene may mediate abnormalities in Tregs, leading to an imbalance in maternal-fetal immune tolerance and ultimately resulting in recurrent spontaneous abortion (RSA). This meta-analysis aims to assess the potential association between FOXP3 polymorphisms and susceptibility to RSA using five specific single nucleotide polymorphisms (SNPs). MATERIALS AND METHODS: By conducting a comprehensive search across databases such as EMBASE, PubMed, Web of Science, Cochrane Library, CNKI, Wanfang, and CBM, we identified suitable studies for inclusion in the meta-analysis. The data extracted from these studies were subjected to analysis using Stata SE 15. To assess the degree of association, we utilized the odds ratio (OR) along with its corresponding 95% confidence intervals (CI). Five specific single nucleotide polymorphisms (SNPs) were employed in assessing the connection between FOXP3 gene polymorphisms and RSA. RESULTS: The meta-analysis demonstrated a significant association between several polymorphisms (rs3761548, rs2232365, rs2232368, rs2280883, and rs2294021) and susceptibility to RSA. Conversely, the FOXP3 rs5902434 polymorphism was not associated with susceptibility to RSA. CONCLUSION: Our meta-analysis suggests that these genetic variations within the FOXP3 gene might play a role in the progression of RSA disease. Meanwhile, large-scale studies that consider multiple factors are needed to validate this finding.


Assuntos
Aborto Habitual , Feminino , Gravidez , Humanos , Aborto Habitual/genética , Polimorfismo de Nucleotídeo Único , Bases de Dados Factuais , Feto , Fatores de Transcrição Forkhead/genética
20.
Hematology ; 29(1): 2326389, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38466633

RESUMO

Objectives: Aplastic anemia (AA) is one of the immune-mediated bone marrow failure disorders caused by multiple factors, including the inability of CD4 + CD25 + regulatory T cells (Tregs) to negatively regulate cytotoxic T lymphocytes (CTLs). Dioscin is a natural steroid saponin that has a similar structure to steroid hormones. The purpose of this study is to look into the effect of Dioscin on the functions of CD4 + CD25+ Tregs in the AA mouse model and explore its underlying mechanism.Methods: To begin with, bone marrow failure was induced through total body irradiation and allogeneic lymphocyte infusion using male Balb/c mice. After 14 consecutive days of Dioscin orally administrated, the AA mouse model was tested for complete blood counts, HE Staining of the femur, Foxp3, IL-10 and TGF-ß. Then CD4 + CD25+ Tregs were isolated from splenic lymphocytes of the AA mouse model, Tregs and the biomarkers and cytokines of Tregs were measured after 24 h of Dioscin intervention treatment in vitro.Results: Dioscin promotes the expression of Foxp3, IL-10, IL-35 and TGF-ß, indicating its Tregs-promoting properties. Mechanistically, the administration of Dioscin resulted in the alteration of CD152, CD357, Perforin and CD73 on the surface of Tregs, and restored the expression of Foxp3.Conclusion: Dioscin markedly attenuated bone marrow failure, and promoted Tregs differentiation, suggesting the maintenance of theimmune balance effect of Dioscin. Dioscin attenuates pancytopenia and bone marrow failure via its Tregs promotion properties.


Assuntos
Anemia Aplástica , Diosgenina , Diosgenina/análogos & derivados , Animais , Camundongos , Masculino , Humanos , Linfócitos T Reguladores , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Diosgenina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fatores de Transcrição Forkhead
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...